\qquad Date: \qquad

Lesson 8.3 Solving Simple Inequalities

Complete with $=,>$, or $<$.

1. 16

-20
2. $35 \cdot 6$
 $6 \cdot 35$
3. -5
 -1
4. 87
 78
5. $60 \div 20$

$20 \div 60$
6. -12

Use substitution to determine four solutions of each inequality. Then represent the solutions of each inequality on a number line.

Example

$y>7$

When $y=_.8>7$ is true.
When $y=\quad 9 \quad y>7$ is true.
When $y=15, y>7$ is true.
When $y=\xrightarrow{98}, y>7$ is true.

The inequality $y>7$ is true for any value of y that is \qquad 7.

The solutions can be represented on a number line as shown:

Name: \qquad _

Date:

7. $g>13$

When $g=\ldots, g>13$ is true.
When $g=\ldots, g>13$ is true.

When $g=\ldots, g>13$ is true.

When $g=\ldots, g>13$ is true.

The inequality $g>13$ is true for any value of g that is \qquad 13.

The solutions can be represented on a number line as shown:

8. $m<28$

When $\mathrm{m}=$ \qquad $m<28$ is true.

When $m=$ \qquad $m<28$ is true.

When $m=$ \qquad $m<28$ is true.

When $m=$ \qquad $m<28$ is true.

The inequality $m<28$ is true for any value of m that is \qquad 28.

The solutions can be represented on a number line as shown:

Name: \qquad Date:
9. $\mathrm{p}<45$
10. $s>28$
11. $a>-57$
12. $g<-93$
13. $f>-86$
14. $m<-105$

Name: \qquad Date: \qquad

Use substitution to determine four solutions of each inequality. Then represent the solutions of each inequality on a number line.

Example

$e \geq 15$
When $e=15, e \geq 15$ is true.
When $e=16, e \geq 15$ is true.
When $e=23, e \geq 15$ is true.
When $e=84, e \geq 15$ is true.

The inequality $e \geq 15$ is true for any value of e that
is greater than or equal to 15

The solutions can be represented on a number line as shown:

The shaded circle at the end of the arrow above the number line indicates that 15 is a solution of the inequality $e \geq 15$.

Name: \qquad Date:
15. $d \geq 9$

When $d=$ \qquad $d \geq 9$ is true.

The inequality $d \geq 9$ is true for any value of d that is \qquad 9.

The solutions can be represented on a number line as shown:

16. $z \leq 21$

When $z=$ \qquad $z \leq 21$ is true.

The inequality $z \leq 21$ is true for any value of z that is \qquad 21.

The solutions can be represented on a number line as shown:

17. $n \leq 17$
18. $u \geq 49$
19. $w \geq-63$
21. $p \geq-78$
22. $y \leq-112$
13. a) $\frac{r}{2}$ meters
b) $t=\frac{r}{2}$
c) Independent: r Dependent: t
14.

15.

16. a) $b=a+4$
b)

Amount of Money Mandy Spends (a dollars)	1	2	3	4	5
Amount of Money Jason Spends (b dollars)	5	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$

c) Amount of Money Spent
17. a) $p=h-2$
b)

Number of Adrian's Game Cards (h)	2	4	6	8	10
Number of Ben's Game Cards (p)	$\underline{0}$	$\underline{2}$	$\underline{4}$	$\underline{6}$	$\underline{8}$

c)

Number of Game Cards

18. a) $q=4 k$
b)

Side Length of the Square (k inches)	1	2	3	4	5
Perimeter of the Square (q inches)	$\underline{4}$	$\underline{8}$	$\underline{12}$	$\underline{16}$	$\underline{20}$

c)

Side Length (in.)

Lesso n 8.3

1. $16 \longrightarrow-20$
2. $87 \longrightarrow 78$
3. $35 \cdot 6=6 \cdot 35$
4. $60 \div 20 \rightarrow 20 \div 60$
5. $-5<-1$
6. $-12 \ll$
7. Answers vary. Sample:

When $g=\underline{14}, g>13$ is true.
When $g=\underline{15}, g>13$ is true.
When $g=\underline{20}, g>13$ is true.
When $g=\underline{78}, g>13$ is true.
The inequality $g>13$ is true
for any value of g that is
greater than 13.

8. Answers vary. Sample:

When $m=\underline{27}, m<28$ is true.
When $m=\underline{26}, m<28$ is true.
When $m=\underline{20}, m<28$ is true.
When $m=\underline{12}, m<28$ is true.
The inequality $m<28$ is true
for any value of m that is
less than 28.

9. Answers vary. Possible values of p are $44,43,40$, and 19.
The inequality $p<45$ is true for any value of p that is less than 45 .

10. Answers vary. Possible values of s are 29, 30, 38, and 51.
The inequality $s>28$ is true
for any value of s that is greater than 28 .

11. Answers vary. Possible values of a are $-56,-55$, -40 , and 1.
The inequality $a>-57$ is true for any value of a that is greater than -57 .

12. Answers vary. Possible values of g are $-94,-95$, -100 , and -179.
The inequality $g<-93$ is true for any value of g that is less than -93.

13. Answers vary. Possible values of f are $-85,-83$, -60 , and 86.
The inequality $f>-86$ is true for any value of f that is greater than -86 .

14. Answers vary. Possible values of m are -106 , $-107,-109$, and -120 .
The inequality $m<-105$ is true for any value of m that is less than -105 .

15. Answers vary. Sample:

When $d=\underline{9}, d \geq 9$ is true.
When $d=\underline{10}, d \geq 9$ is true.
When $d=\underline{17}, d \geq 9$ is true.
When $d=\underline{28}, d \geq 9$ is true.
The inequality $d \geq 9$ is true for any value of d that is
greater than or equal to 9.

16. Answers vary. Sample:

When $z=\underline{21}, z \leq 21$ is true.
When $z=\underline{20}, z \leq 21$ is true.
When $z=\underline{13}, z \leq 21$ is true.
When $z=\underline{4}, z \leq 21$ is true.
The inequality $z \leq 21$ is true for any value of z that is less than or equal to 21.

17. Answers vary. Possible values
of n are $17,16,9$, and 0 .
The inequality $n \leq 17$ is true for any value of n that is less than or equal to 17 .

18. Answers vary. Possible values of u are $49,50,89$, and 100.
The inequality $u \geq 49$ is true for any value of u that is greater than or equal to 49 .

19. Answers vary. Possible values
of w are $-63,-62,-5$, and 4 .
The inequality $w \geq-63$ is true for any value of w that is greater than or equal to -63 .

20. Answers vary. Possible values of k are $-85,-86,-95$, and -103 .
The inequality $k \leq-85$ is true for any value of k that is less than or equal to -85 .

21. Answers vary. Possible values
of p are $-78,-77,-10$, and 5 .
The inequality $p \geq-78$ is true for any value of p that is greater than or equal to -78 .

22. Answers vary. Possible values of y are $-112,-113,-120$, and -200 .
The inequality $y \leq-112$ is true for any value of y that is less than or equal to -112 .

Lesson 8.4

1.

$$
\begin{aligned}
\underline{y} \oplus \underline{q} & =\underline{32} \\
y \oplus \underline{q} \bigoplus \underline{q} & =\underline{32} \Theta \underline{q} \\
y & =\underline{23}
\end{aligned}
$$

Jeremy collected $\$ \underline{23}$ at first.
2.

$$
\begin{aligned}
\underline{b} \bigodot \underline{\underline{b}} \bigodot \underline{12} & =\underline{53} \\
\underline{12} \oplus \frac{12}{\underline{b}} & =\underline{53} \oplus \underline{65}
\end{aligned}
$$

Wayne had 65 comic books at first.
3. $g-72=36$; 108 muffins
4. $k+24=92 ; 68$ pages
5.

$$
\begin{aligned}
\underline{5 w} & =\underline{60} \\
\underline{5 w} \doteqdot \underline{5} & =\underline{60} \doteqdot \underline{5} \\
\underline{w} & =12
\end{aligned}
$$

Dawn sold 12 sandwiches.
6. $3 n=72 ; 24$ dimes
7. $\frac{w}{8}=\underline{6}$ $\underline{w} \bigodot \underline{8}=\underline{6} \bigodot \underline{8}$

$$
\underline{w}=\underline{48}
$$

Lester had 48 marbles at first.
8. $\frac{m}{6}=4 ; 24$ tiles
9. a) $w \geq 15$
b) 15
10. a) $s<500$
b) 499 words
11. a) $m>15$
b) 16 members
12. a) $a \leq 19$
b) 19 grammar books
13. a) $v \leq 7,500$
b) 7,500 people

Chapter 9

Lesson 9.1

1. $P(2,5), Q(5,4), R(1,3), S(4,2)$
2.

3.

4.

5. $M(0,-4), N(7,-5), P(8,8), Q(0,8)$, $R(-5,6), S(0,3), T(-2,0), \cup(-6,-3)$, $V(-2,-6), W(2,-6)$
6. Quadrant III: A, B, C,

Quadrant IV: D, E, F

7. $(8,-1)$
8. $(6,4)$
9. $(-3,-3)$
10. $(-6,2)$

